Common Impedance

Model for the positive, negative and zero sequence system:

The following equations are used:
$\underline{u}_{i}-\underline{u}_{j}=\underline{z}_{i j} \underline{i}_{i}$
$\underline{u}_{j}-\underline{u}_{i}=\underline{z}_{j i} \underline{i}_{j}$
With:
$\underline{z}_{i j}=r_{i j} p u+j x_{i j}-p u$
$\underline{z}_{j i}=r_{j i}-p u+j x_{j i}-p u$
The following equations are used to calculate the impedances in Ohm:
With r , x defining the per unit impedance, the impedance referred to the nominal voltage at bus i can be calculated as follows:
$\underline{Z}_{i j}=\frac{U n_{i}{ }^{2}}{S n} \cdot\left(r_{i j}-p u+j x_{i j}-p u\right)$
Analogously, the impedance referred to the nominal voltage at bus j is:
$\underline{Z}_{j i}=\frac{U n_{j}{ }^{2}}{S n} \cdot\left(r_{j i}-p u+j x_{j i-} p u\right)$
$\begin{array}{ll}\mathrm{Un} & : \text { Nominal bus bar voltage of bus i or bus } \mathrm{j} \text { in } \mathrm{kV} \\ \mathrm{Sn} & \text { : Nominal power in MVA }\end{array}$

For the short-circuit calculation method IEC/VDE and ANSI it is possible to use different impedances as for the load flow calculation and the 'complete' short-circuit method.

